Sanjib C. Chowdhury (UDel), Munetaka Kubota (UDel), Bazle Z. Haque (UDel), John W. Gillespie Jr. (UDel), Robert M. Elder (ARL), Timothy W. Sirk (ARL), Jan W. Andzelm (ARL)

How We Fit

Materials-by-Design Process

- Establish a molecular dynamics based “Materials-by-Design” framework for composite interphase
- Identify the interphase (fiber-sizing-epoxy system) deformation and energy absorption mechanism
- Predict traction law – Mode I, II & Mixed Mode
- Predict strain rate, pre-stress effects on TL

Technical Approach

Molecular Modeling of Single- Constituent Systems
(Glass, Sizing & Epoxy)
(Study Energy Absorption & Damage Mechanism)

Molecular Modeling of Two- Constituent Systems
(Glass-Sizing, Epoxy-Sizing)
(Study Diffusion & Degree of Adhesion)

Molecular Modeling of Three- Constituent Glass-Sizing-Epoxy Interphase
(Deformation/Damage/Energy absorption/Properties Tailoring Mechanism)

Develop Interphase Cohesive Traction-Separation Law
(Mode-I/II/Mixed, Strain Rate, Pre-Stress, Proportional/Non- Proportional Loading)

Key Goals

- Interphase is a distinct region between fiber and matrix which develops during processing through diffusion and reaction between the matrix and the fiber sizing.
- Establish a molecular dynamics based “Materials-by-Design” framework for composite interphase
- Identify the interphase (fiber-sizing-epoxy system) deformation and energy absorption mechanism
- Predict traction law – Mode I, II & Mixed Mode
- Predict strain rate, pre-stress effects on TL

Major Results/Key Accomplishments

- Epoxy with low molecular weight cross-linker has better thermomechanical properties
- ReaxFF can capture the damage through bond breakage

<table>
<thead>
<tr>
<th>System</th>
<th>Modulus (GPa)</th>
<th>Yield Strength (GPa)</th>
<th>Tg (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epon828-Jeff130</td>
<td>5.16</td>
<td>0.284</td>
<td>452</td>
</tr>
<tr>
<td>Epon828-Jeff230</td>
<td>4.87</td>
<td>0.287</td>
<td>448</td>
</tr>
<tr>
<td>Epon828-Jeff400</td>
<td>4.56</td>
<td>0.265</td>
<td>430</td>
</tr>
<tr>
<td>Epon828-Jeff600</td>
<td>4.26</td>
<td>0.239</td>
<td>418</td>
</tr>
</tbody>
</table>

- Sizing morphology affects its properties
- Though presence of more T3 molecules gives better mechanical properties, these structures should have less adhesion with fiber surface

Future Directions in 2017

- Study two- and three-constituent systems interaction
- Predict traction law for these systems at high strain rate
- Conduct model validating experiment for interphase and its constituent systems at high strain rates

- Silane based interphase should be created in between two quartz substrates
- Samples should be tested at various angles for mixed failure modes at high strain rates using SHB