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Mechanism-based Approach

Constituent scale
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Technical Approach

» Conduct molecular dynamics simulations to asses the capability of
ReaxFF to predict the structure and mechanical properties of
glass fibers

» Study the effects of cooling rate and temperature effects on glass
properties

» Using glass model with surface crack, determine
v Cohesive traction law
v/ Statistical strength distribution
v' Fracture energy release rate
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Surface Crack
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Key Goals

« Study the strength improving mechanism of glass fibers
» Through molecular dynamics modeling, determine

v Cohesive traction law

v’ Statistical strength distribution

v' Fracture energy release rate

Matrix

Cohesive surfaces representing
defect planes in S-glass fibers
(Defect size distribution
determined from MD simulations)

Dynamic fracture progression of fibers
and associated stress wave propagation

Micromechanical FE model to predict
tensile failure in a uni-directional layer

FE Based Micro-Mechanical Modeling of Composites
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Major Results/Key Accomplishments

» ReaxFF can better predict the properties of silica glass compared
to other reactive force fields
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Damage Mode at Low SR

» Low strain rate loading allows sufficient time for
voids growth and damage localization leading to
lower bound on stress-strain response

Damage Mode at High SR
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Major Results/Key Accomplishments

Low cooling
rate & low
temp give
higher
mechanical
properties
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Stress Concentration at Crack Tip

Nano-meter size
surface cracks
significantly
reduce strength
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Future Directions in 2017
Modeling of S-glass

Si02 =69%
Al203 = 22%
Ca0 =5%
MgO=4%

Modeling of crack healing
mechanism with sizing
Modeling of tensile fiber failure in

presence of sizing/interphase S-Glass Model
SITYor ) CENTER FOR
COMPOSITE MATERIALS




