UNCLASSIFIED

Meso-Mechanical Modeling of Canonical Perforation Experiments

Mesoscale mechanisms pass

information up to macoscale

plane matrix cracking

ion-shear

h-shear

damage modes

o-Mechanical Damage

ssive matrix cracking

Christopher S. Meyer (UD/CCM, ARL), Bazle Z. (Gama) Haque (UD/CCM), John W. Gillespie, Jr. (UD/CCM), Daniel J. O'Brien (ARL), Bradley D. Lawrence (ARL), Jennifer M. Sietins (ARL), Enoch Bonyi (MSU), Kadir Aslan (MSU)

ARL

Enterprise for Multi-scale Research of Materials

How We Fit

Mechanism

Primary varn

Fiber pull out

Shear plugging Fiber pull out

nterlaver shea

Transverse stress

Mechanism-based Approach

tructural sc

 Experiments to see mesoscale damage mechanisms
 Modeling & simulation to

U.S. ARMY RDECOM®

- damage mechanisms
- Meso-mechanical model to capture mechanisms occurring at mesoscale:
- Axial wave speed
- Transverse cone wave speed
- Transverse tow cracking
 Tow-matrix and tow-tow debonding
- Model damage and failure modes from understanding of mechanisms

- **Technical Approach**
- Macroscopic damage modes dissipate energy through
 Elastic strain energy (wave motion,
- vibration)
 Meso-mechanical and micro-
- mechanical damage mechanisms

- · Isolate mechanisms that lead to damage modes ("See It")
 - Single layer eliminates delamination mode and interlaminar stress field
 - Focus on perforation phase (eliminate penetration and transition)
 Conduct experiments to isolate damage mechanisms and relate them
 - to measurements and build model to reproduce

- Systematically build up complexity of models ("Understand It")
 Homogenized continuum plain weave properties
- Meso-mechanical plain weave model geometry with cohesive zone elements bonding constituents

Major Results

Key Accomplishments

 Meso-mechanical model built, scripted with Cubit for easy geometry and finite element mesh modification (C. Key)

Future Directions in 2017

 CT Scan single layer plain weave composite samples to get accurate geometry and build FEM model to reproduce geometry

- Model tensile testing compare load-displacement curve to progressive matrix cracking, tow-two debonding, & tow fracture
- Model punch-shear testing compare load-displacement curve
- to quasi-static work of perforation
- Traction-separation behavior of tow-tow bond
- Impact below V50 elastic wave propagation

Impact

- Validated meso-mechanical plain weave composite model will be applied to woven composites of interest to the Army
- In materials-by-design framework, model will be used to evaluate novel composite material systems in ballistic impact
- Used in developing advanced composite armor systems for personnel and light vehicles, model will lead to enhanced protection for the soldier
- Used in evaluating weapon systems against composite armor will lead to enhanced lethality for soldier

- experimental data to validate model and to refine model to capture
- Tensile, compression, and punch-shear behavior
 - Load-displacement
 - Mesoscale damage mechanisms:
 Matrix cracking
 - Tow-tow debonding
 - row-tow deponding
 Tensile tow failure
- Elastic wave propagation behavior
- Axial (implosion) and transverse cone wave speeds
 - Back-face deflection

 Use validated model to simulate canonical ballistic penetration experiments and reproduce VI-VR and V50

UNCLASSIFIED